GCE ASIA Level

0973/01

MATHEMATICS - C1

Pure Mathematics
WEDNESDAY, 17 MAY 2017 - MORNING
1 hour 30 minutes

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a WJEC pink 16-page answer booklet;
- a Formula Booklet.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.
Answer all questions.
Sufficient working must be shown to demonstrate the mathematical method employed.
Calculators are not allowed for this paper.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.

1. The points A and B have coordinates $(-2,3)$ and $(4,5)$ respectively. The line L_{1} passes through the point B and is perpendicular to $A B$.
(a) (i) Find the gradient of $A B$.
(ii) Find the equation of L_{1}.

The line L_{2} has equation $x+2 y+1=0$.
The lines L_{1} and L_{2} intersect at the point C.
(b) (i) Show that C has coordinates $(7,-4)$.
(ii) Show that the value of $\cos B \widehat{C A}$ may be expressed in the form $\frac{3}{\sqrt{a}}$, where a is an integer whose value is to be found.
(c) The line $C B$ is extended to the point D so that B is the mid-point of $C D$.
(i) Find the coordinates of D.
(ii) Write down the geometrical name for the triangle $A C D$.
2. Simplify
(a) $\frac{5 \sqrt{5}-9}{3+2 \sqrt{5}}$,
(b) $(2 \sqrt{13})^{2}-(3 \sqrt{7} \times \sqrt{28})-\frac{5 \sqrt{99}}{\sqrt{11}}$.
3. The curve C has equation $y=\frac{3}{4} x^{2}-4 x-10$.
(a) The point P has coordinates $(6,-7)$ and lies on the curve C. Find the equation of the tangent to C at P.
(b) The point Q lies on C and is such that the gradient of the normal to C at Q is -2 . Find the x-coordinate of Q.
4. (a) Express $-2 x^{2}-20 x+35$ in the form $a(x+b)^{2}+c$, where the values of the constants a, b and c are to be found.
(b) Without carrying out any further calculation, write down the stationary value of $y=-2 x^{2}-20 x+35$ and state whether this stationary value is a maximum or a minimum.
5. (a) Use the binomial theorem to expand $\left(x+\frac{2}{x}\right)^{4}$, simplifying each term of the expansion.
(b) In the binomial expansion of $(a+2 x)^{6}$, where $a \neq 0$, the coefficient of the term in x^{2} is equal to the coefficient of the term in x. Find the value of a.
6. Solve the inequality $2 x^{2}+11 x+12 \geqslant 0$.
7. (a) Given that $x-2$ is a factor of $k x^{3}+2 x^{2}-41 x+10$, write down an equation satisfied by k. Hence show that $k=8$.
(b) Factorise $8 x^{3}+2 x^{2}-41 x+10$.
(c) Find the remainder when $8 x^{3}+2 x^{2}-41 x+10$ is divided by $2 x+1$.
8. The diagram shows a sketch of the graph of $y=f(x)$. The graph passes through the points $(-4,0)$ and $(8,0)$ and has a minimum point at $(2,-6)$.

(a) Sketch the graph of $y=-\frac{1}{2} f(x)$, indicating the coordinates of the stationary point and the coordinates of the points of intersection of the graph with the x-axis.
(b) Siân is asked by her teacher to draw the graph of $y=f(a x)$ for various non-zero values of the constant a. Write down two facts about the stationary point on Siân's graph which will always be true whatever her choice of a.
9. (a) Given that $y=-5 x^{2}-7 x+13$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ from first principles.
(b) Differentiate $6 x^{\frac{3}{4}}+\frac{5}{x^{3}}-9$ with respect to x.
10. The curve C has equation

$$
y=x^{3}-9 x^{2}+15 x+10 .
$$

(a) (i) Find the coordinates of each of the stationary points of C.
(ii) Determine the nature of each of these stationary points.
(b) Sketch C, indicating the coordinates of each of the stationary points.
(c) Given that the equation

$$
x^{3}-9 x^{2}+15 x+10=k
$$

has only one real root, find the range of possible values for k.

END OF PAPER

